Ce document appartient à :
Nom: ...
Prénom : ...
Année : ...

Génie électrique
Automatismes industriels
Cours
Imprimées sur papier blanc
à acquérir et connaître sans support

Section de Technicien Supérieur en Électrotechnique
Étudiants – Apprentis

Lycée Bernard Palissy
1 rue de Gascogne
17107 Saintes
Page vide pour classement des feuilles.

Vous pouvez y prendre des notes complémentaires.
1. Fonctionnalités
Dans leur rôle d’acquisition dédiée au traitement de l’information, les détecteurs ont les principales fonctions élémentaires suivantes : contrôler la présence, l’absence ou le positionnement d’objets divers, détecter le passage, le défilement ou le bourrage de ceux-ci, les compter, etc.

Les applications qui mettent en pratique ces formes de détection "Tout Ou Rien" sont multiples. Les plus typiques portent sur :
- la détection de pièces machines,
- la détection liée à la manutention,
- la détection directe d’objets (en cours de fabrication ou de manutention),
- la détection directe de personnes, de véhicules, d’animaux, etc.

1.1. L’offre principale
Quatre grandes familles de détecteurs de présence constituent la base des offres :
- les Interrupteurs de Position électromécaniques actionnés par contact direct avec des objets ou pièces,
- les Détecteurs de Proximité Inductifs électroniques, pour détecter sans contact physique et à faible distance d’objets métalliques,
- les Détecteurs de Proximité Capacitifs électroniques, pour détecter sans contact physique et à faible distance des objets de natures diverses,
- les Détecteurs Photoélectriques électroniques pour détecter des objets situés jusqu’à plusieurs dizaines de mètres.

1.2. L’offre complémentaire
Des produits viennent compléter l’offre de détection. Ils répondent à des applications plus spécifiques. Citons :
- les pressostats, vacuostats et capteurs analogiques de pression,
- les interrupteurs de sécurité,
- les systèmes d’identification inductive permettant de stocker et lire des informations codées sur des étiquettes associées physiquement aux produits.
- Les codeurs optiques rotatifs, qui renseignent sur la position ou le déplacement angulaire ou linéaire d’organes,
- ...

2. Démarche d’aide au choix
Le choix proposé s’établit en deux temps :

Phase 1 : détermination de la famille de détecteurs adaptée à l’application. L’identification de la famille recherchée s’effectue par un jeu de questions/réponses chronologiquement posées, portant sur des critères généraux et fondamentaux s’énonçant en amont de tout choix :
- nature de l’objet à détecter : solide, liquide, gazeux, métallique ou non,
- contact possible avec l’objet,
- distance objet/détecteur,
- masse de l’objet,
- vitesse de défilement,
- cadences de manœuvre,
- espace d’intégration du détecteur dans la machine.

L’organigramme ci-dessous illustre cette démarche qui conduit à faire la sélection d’une famille de détecteurs sur la base de critères simples.

Phase 2 : détermination du type et de la référence du détecteur recherché. Cette deuxième phase tient compte :
- l’environnement : température, humidité, poussières, projections diverses, ...
- la source d’alimentation : alternative ou continue,
- le signal de sortie : électromécanique, statique,
- le type de raccordement : câble, bornier, connecteur.
1. Schémas internes équivalents

1.1. Sortie statique, 2 fils

Description

Ce type de détecteur comporte un circuit électronique qui commande une ou plusieurs sorties statiques.

Il existe des détecteurs pour tension continue, d'autres pour tension alternative mais on rencontre aussi des détecteurs qui se branchent indifféremment sur une tension alternative ou continue.

Malgré la nécessité d'alimenter en énergie le circuit électronique, ce type de détecteur ne comporte que deux fils.

Il est souple d'utilisation puisqu'il se connecte comme un détecteur à contacts secs.

Il est pratiquement inusable car il ne comporte pas de contacts électriques mobiles.

Il est utilisé lorsqu'il n'y a pas nécessité d'une grande fréquence de commutation. Dans le cas contraire, on préférera un détecteur 3 fils.

Connexion

Il se branche comme un interrupteur, en série avec le circuit à contrôler.

Il faut néanmoins vérifier la tension admissible et pour certains détecteurs, la polarité.

1.2. Sortie statique, détecteur 3 fils

Description

Ce type de détecteur comporte un circuit électronique qui commande une ou plusieurs sorties statiques. S'il ne comporte qu'une seule sortie statique, c'est un détecteur 3 fils sinon ça sera un 4 fils (2 sorties statiques).

Il fonctionne uniquement en tension continue.

Il peut être détecteur PNP ou NPN.

Il est pratiquement inusable car il ne comporte pas de contacts électriques mobiles.

Il est utilisé lorsqu'il y a nécessité d'une grande fréquence de commutation. Dans le cas contraire, on préférera un détecteur 2 fils.

Connexion

Le détecteur PNP ou NPN comporte un transistor.

Pour le détecteur PNP :

Lorsque qu'il y a détection, le transistor est passant (contact fermé). Il va donc imposer le potentiel + sur la sortie S. La charge est branchée entre la sortie S et le potentiel -. Ce type de détecteur est adapté aux unités de traitement qui fonctionnent en logique positive.

Pour le détecteur NPN (voir figure) :

Lorsque qu'il y a détection, le transistor est passant (contact fermé). Il va donc imposer le potentiel - sur la sortie S. La charge est branchée entre la sortie S et le potentiel +. Ce type de détecteur est adapté aux unités de traitement qui fonctionnent en logique négative.

On prendra donc soin d'identifier le type de logique utilisée par les unités de traitement (Automate programmable, etc...).
1.3. Sortie statique, 4 fils

Un détecteur 4 fils est un détecteur 3 fils comportant un fil supplémentaire pour la transmission d’un signal complémentaire.

On dispose donc d’une sortie passante en présence d’une pièce, l’autre bloquée en présence d’une pièce.

1.4. Sortie électromécanique, contacts secs

Description

Ce type de détecteur comporte généralement 2 contacts électriques (un NO et un NF). Ils peuvent être utilisés sous différentes tensions (inférieure à la tension maximum admissible) et ne sont pas polarisés.

Ce type de détecteur est souple d’utilisation mais subit l’usure des contacts électriques.

Il est néanmoins relativement fiable.

• Connexion

Il se branche comme un interrupteur, en série avec le circuit à contrôler.

2. Mise en œuvre

2.1. Schéma

→ Un cadre contenant le symbole de détecteur électronique

2.2. Repérage

Les différents fils sont souvent repérés par leur couleur, notée en abrégé :

<table>
<thead>
<tr>
<th>Abrégé</th>
<th>Complet</th>
<th>Couleur</th>
</tr>
</thead>
<tbody>
<tr>
<td>BN</td>
<td>Brown</td>
<td>Marron</td>
</tr>
<tr>
<td>BK</td>
<td>Black</td>
<td>Noir</td>
</tr>
<tr>
<td>BU</td>
<td>Blue</td>
<td>Bleu</td>
</tr>
</tbody>
</table>

2.3. Compatibilité

Pour toute connexion d’un générateur à un récepteur, il faut vérifier les compatibilités en tension et en courant.

Dans tous les cas, il convient de tenir compte :

- du courant commuté I_{max} que peut fournir le détecteur lorsque celui-ci est passant. On vérifiera qu’il est supérieur au courant I_{h} imposé par la charge :
 \[I_{\text{max}} > I_{\text{h}} \]

- de la tension d’alimentation ou de service : vérifier que la tension utilisée est bien dans les limites supportées par le détecteur.

2.3.1. Détecteurs 2 fils

Dans le cas des détecteurs 2 fils, il convient de tenir compte :

- du courant résiduel I_{r} : courant traversant le détecteur à l’état bloqué. Il doit être suffisamment petit pour ne pas rendre actif l’organe piloté par le détecteur (bobine, entrée d’API, ...).

- de la tension de déchet V_{d} : tension aux bornes du détecteur à l’état passant (mesurée pour le courant nominal). Elle doit être suffisamment petite pour ne pas bloquer l’entrée pilotée. On vérifiera :
 \[V_{\text{CC}} - V_{\text{d}} > V_{\text{lim}} \]

2.3.2. Détecteurs 3 fils

Dans le cas des détecteurs 3 fils, il convient de tenir compte :

- de la tension de saturation V_{Sat} :
 c’est la tension entre la sortie du détecteur (collecteur) et l’entrée d’alimentation qui n’est pas reliée à la charge (émetteur) = tension collecteur-émetteur du transistor interne. Elle est parfois appelée aussi tension de déchet dans certains catalogues.
 On vérifiera que la tension restante de l’alimentation moins le déchet est suffisante pour la charge :
 \[V_{\text{CC}} - V_{\text{Sat}} > V_{\text{lim}} \]
1. Présentation
Un détecteur industriel fournit une information de type Tout-Ou-Rien (TOR) qui indique si une grandeur physique a atteint un seuil.

Un capteur analogique fournit un signal électrique dont l'amplitude est fonction de la grandeur physique mesurée, le plus souvent linéaire.

2. Grandeurs mesurées et technologies de capteurs industriels
Pour chaque type de grandeur associé à une technologie de mesure, rechercher, dans les différentes documentations disponibles (catalogue constructeur, catalogue distributeur, ...), les différents modèles de capteurs analogiques industriels qui existent.

Établir une synthèse des caractéristiques de ce couple grandeur/technologie :
- Gamme de mesure minimum, maximum, la plus rencontrée
- Précision
- Sélectionner un exemple typique de capteur, ne pas oublier de noter la référence et la page du document sur lequel vous pouvez le retrouver.
- Échelles de mesures proposées pour fournir l'information électrique de sortie
- ...

2.1. Grandeurs électriques

<table>
<thead>
<tr>
<th>Grandeur</th>
<th>Technologie de mesure</th>
<th>Gamme de mesure</th>
<th>Marque</th>
<th>Avantages / inconvénients/ Critères de choix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Courant</td>
<td>Effet hall</td>
<td></td>
<td>LEM HONEYWELL</td>
<td></td>
</tr>
</tbody>
</table>

Les capteurs analogiques

2.2. Grandeurs environnementales

<table>
<thead>
<tr>
<th>Grandeur</th>
<th>Technologie de mesure</th>
<th>Gamme de mesure</th>
<th>Marque</th>
<th>Avantages / inconvénients/ Critères de choix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Température</td>
<td>Résistance Pt100 Platine 100 ohm @ 0°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Résistance Pt1000 Platine 1000 ohm @ 0°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Résistance Ni1000 Nickel 1000 ohm @ 0°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thermistance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thermocouple Type J</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thermocouple Type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thermocouple</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thermocouple</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Température</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Infrarouge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hygrométrie</td>
<td>Capacitif</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.3. Grandeurs mécaniques statiques (géométriques)

<table>
<thead>
<tr>
<th>Grandeur</th>
<th>Technologie de mesure</th>
<th>Gamme de mesure, unités</th>
<th>Marque</th>
<th>Avantages / inconvénients/ Critères de choix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance</td>
<td>Inductif analogique</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Niveau, distance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Niveau</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Force</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.4. Grandeurs mécaniques dynamiques

<table>
<thead>
<tr>
<th>Grandeur</th>
<th>Technologie de mesure</th>
<th>Gamme de mesure</th>
<th>Marque</th>
<th>Avantages / inconvénients/ Critères de choix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Débit</td>
<td>Effet Hall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conductivité thermique = vitesse du fluide</td>
<td>Electromagnétique</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. **Rappel de la fonction de base**

Mesurer, transformer l'amplitude d'une grandeur physique en une grandeur électrique exploitable dans un automatisme.

2. **Signaux de sortie**

Il s'agit d'être vigilant quant aux termes employés pour désigner une information de sortie :

- **sortie de vitesse** : information portée par le signal
- **sortie en courant** : grandeur électrique qui porte le signal

Attention alors au sens de :

- **sortie de courant en tension** :
 - mesure d'un courant de 0 à 100A
 - sous la forme d'une tension de 0 à 5V

2.1. **Sortie en tension**

La tension de sortie est fonction linéaire de la gamme de mesure. Exemple : la tension varie de 0 à 10 V lorsque la hauteur mesurée varie de 0 à 5 mètres. Le calibre est souvent désigné par ses valeurs mini et maxi séparées par un tiret ; exemple : 0-10V

- Formats rencontrés :
 - **0-10 V** : le plus répandu
 - **± 10 V** : 2 sens de marche : rotation, ...
 - **0-5 V** : pour des cartes moins industrielles
 - **1-5 V** : pour adaptation avec 4-20mA (voir ce calibre)
 - ...

- **Avantages** :
 - Très facile à mettre en œuvre
 - Impédance élevée (100 KΩ à plusieurs MΩ) pour entrée en tension : un simple potentiomètre peut être utilisé.

- **Inconvénients** :
 - Risque d'atténuation et de déformation du signal sur de longues distances

2.2. **Atténuation d'un signal**

Voir en bas de page

2.3. **Sortie en courant**

Le courant de sortie est fonction linéaire de la gamme de mesure. Exemple : variation de 0 à 20 mA pour une mesure de 0 à 100°C.

- Formats rencontrés :
 - 0-20 mA : fréquent, non autonome en énergie
 - **4-20 mA** : le plus répandu ; permet de détecter les ruptures de conducteur ou les défauts de mesure (Si I < 4mA)
 - 0-10mA, 0-16mA : rarement

- **Avantages** :
 - **Pas de perte de signal** sur de longues distances : le courant est le même dans toute la boucle.
 - Peu sensible aux parasites électromagnétiques
 - détection de rupture du conducteur de signal
2.4. Sortie bas-niveau
Certains capteurs ne disposent pas d’amplificateur de signal en sortie, et ne proposent donc pas de signal « haut niveau ».
Le signal « bas niveau », non normalisé, peut être de la forme :
- 0-50 µV, 0-200 µV, 0-1 mV, 0-63 mV, 0-100 mV, ...

2.5. Sortie en fréquence
La fréquence du signal de sortie est fonction de la grandeur à mesurer : débitmètre à effet hall, ...
L’amplitude peut varier en même temps mais la linéarité en amplitude est médiocre.
On emploiera le plus souvent un adaptateur fréquence/tension pour utiliser le signal analogique sur un API.

3. Mise en œuvre
3.1. Alimentation, charge
3.1.1. Sortie en tension
Les capteurs à sortie en tension nécessitent généralement une alimentation continue externe. Le signal de sortie, en tension, est fourni en référence au 0 de l'alimentation.

Toujours vérifier que la résistance de charge n’est pas trop petite, et que le courant qu’elle demandera pourra être fourni par le capteur.

3.1.2. Sortie en courant
- Capteur 4 fils
Pour des sorties 0-20mA, ou des sorties 4-20mA de capteurs évolutés.

- Capteur 3 fils
- Capteur 2 fils
Typiquement pour des sorties 4-20mA de capteurs peu évolués.

Vérifier que la résistance de charge n’est pas trop grande, sinon le capteur ne pourra pas délivrer une tension suffisante pour le courant qu’il veut fournir.
- Intégration d’un appareil de mesure
3.2. Interprétation de la mesure

3.2.1. Sortie de niveau en tension

\[V_o = 6V \rightarrow h = ? \]

3.2.2. Sortie de température en courant

\[I_o = 13mA \rightarrow T = ? \]

3.2.3. Sortie de densité en courant

\[I_o = 7mA \rightarrow d = ? \]
Page vide pour classement des feuillets.

Vous pouvez y prendre des notes complémentaires.
1. Langage LADDER

1.1. Conditions
- Si un état est présent ...
- Détecter la présence d'une pièce...
- Détecter une pièce...

- Si un événement survient...
- Détecter un événement à un instant précis...
- Si un état apparaît...
- Si une pièce arrive...
- Détecter l'arrivée d'une pièce...

- Si un état disparaît...
- Si une pièce part...

- Si une variable est égale à une certaine valeur...

Bloc comparateur

- Si une variable a atteint un certain seuil...

- Si une variable a dépassé un certain seuil...

1.2. Actions
- ... Activer une sortie TOR.
- ... Piloter un actionneur.
- ... Envoyer un ordre.

- ... Mettre à 1 et conserver l'état.

Auto-maintien, effet mémoire

- ... Mettre à 0 et conserver l'état.

- ... Calculer l'opération [...].

- ... Incrémentation (= ajouter 1)

- ... Affecter une valeur constante à une variable.

- ... Copier le contenu d'une variable.
- ... Stocker une valeur.
- ... Garder un mot identique pour l'utiliser à autre chose.

- Acquérir / Capturer / Bloquer la valeur d'une entrée analogique
Page vide pour classement des feuilles.

Vous pouvez y prendre des notes complémentaires.

..
Le calcul numérique sur les Automates Programmables

1. Arithmétique binaire

1.1. Association de caractères binaires
Un Bit (Binary digit) peut contenir 2 valeurs distinctes : 0 ou 1.

L'association d'un bit supplémentaire permet de distinguer 2 fois plus de valeurs :

En associant un 0 aux possibilités déjà présentes :

\[
\begin{array}{c}
0 & 0 \\
0 & 1
\end{array}
\]

En associant un 1 aux possibilités déjà présentes :

\[
\begin{array}{c}
1 & 0 \\
1 & 1
\end{array}
\]

En généralisant, dans une variable à \(n \) bits, on peut donc stocker \(2^n \) valeurs différentes.

Exemple
Sur 3 bits, on peut stocker \(2^3 = 8 \) valeurs différentes :

\[
\begin{array}{c}
000, & 001, & 010, & 011, & 100, & 101, & 110, & 111
\end{array}
\]

A retenir

- Sur 4 bits, on peut coder \(16 \) \(\ldots \) valeurs différentes.
- Sur 8 bits, on peut coder \(256 \) \(\ldots \) valeurs différentes.
- Sur 16 bits, on peut coder \(65536 \) \(\ldots \) valeurs différentes.

1.2. Identification à des valeurs décimales
Dans le cas général d'une base \(n \) à convertir en base 10, chaque caractère représenté sera associé à un poids selon son rang, du plus faible à droite au plus fort à gauche, d'une valeur \(n \times \) plus grande que le précédent à droite.

Dans le cas plus précis du binaire, chaque bit représenté sera associé à un poids binaire selon son rang, du plus faible à droite au plus fort à gauche, d'une valeur \(2 \times \) plus grande que le précédent à droite.

Représentation

\[
\begin{array}{c|cccccccc}
\text{Poids} & 2^7 & 2^6 & 2^5 & 2^4 & 2^3 & 2^2 & 2^1 & 2^0 \\
\text{Valeur} & 128 & 64 & 32 & 16 & 8 & 4 & 2 & 1 \\
\text{bit} & b7 & b6 & b5 & b4 & b3 & b2 & b1 & b0 \\
\end{array}
\]

Exemple
\[
\begin{array}{c|cccccccc}
\times & 128 & 64 & 32 & 16 & 8 & 4 & 2 & 1 \\
\hline
0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
32 & +8 & +4 & & & & & & +1 \\
\hline
= & 45 & (10)
\end{array}
\]

1.3. Représentation hexadécimale
A partir de la représentation binaire, on peut reconstituer très facilement la représentation hexadécimale par le groupement par 4 bits à partir de la droite, suivi de la conversion de chaque quartet en caractère hexadécimal.

1.4. Conversion décimal/binaire
- Énumérer les poids (puissances de 2 vers la gauche) jusqu'à dépasser la valeur à convertir,
- Pour chacun des poids inférieurs,
- si inférieur ou égal à la valeur convertie, le soustraire et écrire un 1
- sinon écrire un 0.

Exemples
- Convertir en binaire :
 - \(1968_{(10)} \)

1.5. Opérations arithmétiques

1.5.1. L'addition
Revenons aux bases de l'addition en posant les opérations :

\[
\begin{array}{ccccccc}
157 & 1 & 0 & 0 & 1 & _ & _ & _ \\
+ & 77 & _ & _ & _ & _ & _ & _ \\
\hline
234 & _ & _ & _ & _ & _ & _ & _
\end{array}
\]

1.5.2. La multiplication

\[
\begin{array}{cc}
57 & _ & _ & _ & _ & _ & _ & _ \\
\times & 23 & _ & _ & _ & _ & _ & _ \\
\hline
171 & _ & _ & _ & _ & _ & _ & _ \\
\hline
114 & _ & _ & _ & _ & _ & _ & _
\end{array}
\]

\[
= & 45 & (10)
\]

Edité sur LibreOffice, suite bureautique gratuite http://fr.libreoffice.org

Cours-i2521-Calcul-numerique.v121.odt - 12 sept. 11 - Rév. 8
2. Les types de données

2.1. Type entier non signé

Tous les bits de la donnée représentent un poids binaire. La valeur résultante est donc forcément entière et positive.

Sur n bits, distinguant 2^n valeurs distinctes, on pourra alors coder les valeurs 0 à $2^n - 1$

<table>
<thead>
<tr>
<th>Poids</th>
<th>2^7</th>
<th>2^6</th>
<th>2^5</th>
<th>2^4</th>
<th>2^3</th>
<th>2^2</th>
<th>2^1</th>
<th>2^0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b7</td>
<td>b6</td>
<td>b5</td>
<td>b4</td>
<td>b3</td>
<td>b2</td>
<td>b1</td>
<td>b0</td>
</tr>
</tbody>
</table>

Exemple :

Entier non signé sur 8 bits :

$2^12 = 256$ valeurs positives possibles : 0 à 255

2.2. Type entier signé

Il est parfois nécessaire de travailler sur des nombres négatifs. Il s'agit alors de distinguer le signe de la valeur (+ ou -) par un bit supplémentaire. La taille des mémoires des processeurs étant limitée, le bit le plus à gauche sera réquisitionné pour représenter le bit de signe :

0 : nombre positif, 1 : nombre négatif.

<table>
<thead>
<tr>
<th>Poids</th>
<th>2^0</th>
<th>2^1</th>
<th>2^2</th>
<th>2^3</th>
<th>2^4</th>
<th>2^5</th>
<th>2^6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>s</td>
<td>b6</td>
<td>b5</td>
<td>b4</td>
<td>b3</td>
<td>b2</td>
<td>b1</td>
</tr>
</tbody>
</table>

On remarquera cependant que l'on peut représenter la valeur nulle par +0 ou −0, ce qui entraînerait des problèmes de calcul.

Les valeurs négatives seront alors représentées en mode « complément à 2 » sur une taille (nombre de bits) dépendant du processeur utilisé (8 bits, 16 bits, 32 bits, ...).

2.3. Le format « complément à 2 »

Il s'agit de représenter les valeurs négatives par les opérations suivantes, à partir de la valeur positive :

- Complément à 1 (inverser chaque bit)
- Additionner 1

Exemple :

en considérant que l'on travaille sur des formats 8 bits :

$45_{(10)}$ 0 0 1 0 1 1 0 1

Complément à 1 : 1 1 0 1 0 0 1 0

+1 : 1

= Complément à 2 : 1 1 0 1 0 0 1 1 = $-45_{(10)}$

Astucre :

Autre méthode pour calculer l'opposé d'un nombre binaire (en complément à 2) :

Recopier les bits en partant de la droite jusqu'au premier 1 rencontré inclus, puis inverser tous les autres bits à sa gauche.

Exercices – Calculs sur formats 8 bits signés

Calculer l'opposé de $0_{(10)}$ en format binaire complément à 2 par le calcul arithmétique et non par l'astuce.

Calculer en binaire (+45) + (−45), (+60) + (−45), (+45) + (−34)

Calculer en binaire (-126), (-127), en déduire ce que serait (-128).

Convertir un nombre négatif binaire en décimal : 10011011

2.4. Type réel

Il est parfois nécessaire de travailler sur des nombres décimaux, « à virgule ». Mais il ne sera pas possible de représenter l'ensemble des nombres réels, leur nombre étant infini, contrairement aux capacités d'un processeur qui sont limitées et finies.

Il s'agira alors de définir des limites aux parties entières (plus grande valeur absolue, avant la virgule) et aux parties décimales (limite de précision, après la virgule). La combinaison de ces deux contraintes est définie par le « nombre de chiffres significatifs », la virgule pouvant être placée n'importe où. On parle alors de nombres « à virgule flottante » ou « flottants ».

Le format plus complexe (mantisse + exposant) est présenté dans la documentation associée à ce cours. Le nombre de chiffres significatifs (précision) est lié à la taille mémoire occupée par la valeur : 4 octets, 8 octets, 10 octets, ...

Ce type de données n'est pas disponible sur les API d'entrée de gamme car leur puissance de calcul n'est pas suffisante.

2.5. Type caractère

La représentation des caractères n'est qu'une interprétation de l'utilisateur. Chaque caractère est associé à une valeur numérique binaire selon un codage normalisé, et son affichage est assuré par une description de table de caractère, que l'homme sait reconnaître.

Les codages standards sont :

- Le format ASCII (depuis les années 1960)
- Le format UNICODE (depuis les années 1990)

Voir les documentations sur le codage de caractères associées à ce cours.
3. Choix d'un type de donnée pour une variable

3.1. Les questions à se poser

- Pour mettre en place un comptage pouvant aller jusqu'à un nombre maximum de x pièces, quelle taille de variable est nécessaire ?

 On sait :

 - dans 1 bit, on peut stocker 2 valeurs,
 - dans n bits, on peut stocker 2^n valeurs différentes, donc distinguer une valeur pouvant aller de 0 à 2^n-1 en nombres non signés (toujours positifs).

 Il suffit de choisir le nombre n de bits minimum permettant d'obtenir $2^n > x$

Application

On désire compter un stock de 2000 pièces.

Sur 8 bits : $2^8 = 256$;

256 < 2000 : insuffisant

Sur 16 bits : $2^{16} = 65536$;

65536 > 2000 : suffisant.

On choisira donc un mot de 16 bits.

- Pour gérer une hauteur de 3 mètres avec une précision de 1/100e de mm, quel type de données peut-on utiliser ?

 Choisissons une unité de référence : les « mm ».

 Calculons combien de « pas » il faudra distinguer tout au long de notre échelle :

 - Hauteur maximum : 3 000 mm
 - Hauteur minimum : 0 mm
 - Étendue de l'échelle = maxi – mini = 3000 mm
 - Précision : 0,1 mm
 - Nombre de pas = Étendue / précision = 3000 / 0,1 = 30 000 points
 - Nombre de bits minimum pour distinguer 30 000 points :

 15 bits car $2^{15} = 32768$

 - Type de données à utiliser :

 Type entier sur 16 bits « Word », signé ou non

- Pour gérer une température variant de -200°C à +850°C avec une précision de 0,02°C, quel type de données peut-on utiliser ?

4. Les calculs numériques sur API

4.1. Limitations liées au matériel

Étant données les limitations de stockage de valeurs liées aux formats des données, il faudra s'assurer, à chaque calcul, final ou intermédiaire, que le résultat entre bien dans les limites disponibles.

Ainsi, on peut être surpris parfois par des résultats obtenus.

Exemple

<table>
<thead>
<tr>
<th></th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>28000</td>
<td>0110110101100000</td>
</tr>
<tr>
<td>+ 7000</td>
<td>0011011010110000</td>
</tr>
<tr>
<td></td>
<td>= 100010010111000</td>
</tr>
</tbody>
</table>

↑ Signe passé à 1, donc résultat négatif

Interprétation du résultat en décimal, en calculant l'opposé :

1000100010111000

Inversion

0111011101000111

+ 1 0111011101000111 = 30536 (10)

Le résultat de l'addition 28000 + 7000 serait donc – 30536 !!
Le Grafcet - Description générale

La création d'une machine automatisée nécessite un dialogue entre le client qui définit le cahier des charges (qui contient les besoins et les conditions de fonctionnement de la machine) et le constructeur qui propose des solutions. Ce dialogue n'est pas toujours facile : le client ne possède peut-être pas la technique lui permettant de définir correctement son problème. D'autre part, le langage courant ne permet pas de lever toutes les ambiguïtés dues au fonctionnement de la machine (surtout si des actions doivent se dérouler simultanément). C'est pourquoi l'ADEPA (Agence pour le Développement de la Productique Appliquée à l'industrie) a créé le GRAFCET.

DÉFINITION

Le GRAFCET (GRAphique Fonctionnel des Etapes et Transitions) est l'outil de représentation graphique d'un cahier des charges. Il a été proposé par l'ADEPA (en 1977 et normalisé en 1982 par la NF C03-190).

Le GRAFCET est une représentation alternée d'étapes et de transitions. Une seule transition doit séparer deux étapes.

Une *étape* correspond à une situation dans laquelle les variables de sorties conservent leur état. Les *actions* associées aux étapes sont inscrites dans les *étiquettes*.

Une *transition* indique la possibilité d'évolution entre deux étapes successives. A chaque transition est associée une condition logique appelée *réceptivité*.

RÈGLES DE SYNTAXE

- **Règle N°1 :** situation initiale $[0]$

 Cette représentation indique que l'étape est initialement activée (à la mise sous tension de la partie commande).

 La situation initiale, choisie par le concepteur, est la *situation à l'instant initial*.

- **Règle N°2 :** franchissement d'une transition

 Une transition est *franchie* lorsque l'étape associée est *active* et la *réceptivité* associée à cette transition est *vraie*.

- **Règle N°3 :** évolution des étapes actives

 Le franchissement d'une transition provoque simultanément :

 - la *désactivation* de toutes les étapes immédiatement précédentes reliées à cette transition,
 - l'*activation* de toutes les étapes immédiatement suivantes reliées à cette transition.

- **Règle N°4 :** transitions simultanées

 Plusieurs transitions simultanément franchissables sont simultanément franchies.

- **Règle N°5 :** activation et désactivation simultanées

 Une étape à la fois activée et désactivée reste active.
STRUCTURES DE BASE

Divergence et convergence en ET (séquences simultanées)

Divergence en ET : lorsque la transition A est franchie, les étapes 21 et 24 sont actives.

Convergence en ET : la transition B sera validée lorsque les étapes 23 et 26 seront actives. Si la réceptivité associée à cette transition est vraie, alors celle-ci est franchie.

- **REMARQUES :**
 - Après une divergence en ET, on trouve une convergence en ET.
 - Le nombre de branches parallèles peut-être supérieur à 2.
 - La réceptivité associée à la convergence peut-être de la forme = 1. Dans ce cas la transition est franchie dès qu'elle est active.

Divergence et convergence en OU (aiguillage)

Divergence en OU : l'évolution du système vers une branche dépend des réceptivités A et B associées aux transitions.

Convergence en OU : après l'évolution dans une branche, il y a convergence vers une étape commune.

- **REMARQUES :**
 - A et B ne peuvent être vrais simultanément (conflit).
 - Après une divergence en OU, on trouve une convergence en OU.
 - Le nombre de branches peut-être supérieur à 2.
 - La convergence de toutes les branches ne se fait pas obligatoirement au même endroit.

Saut en avant (saut de phase)

Le saut en avant permet de sauter une ou plusieurs étapes lorsque les actions à réaliser deviennent inutiles.

Saut en arrière (reprise de phase)

Le saut en arrière permet de reprendre une séquence lorsque les actions à réaliser sont répétitives.
MACRO - REPRÉSENTATIONS

Sous-programme (tâche)

Grafnet Principal

Grafnet T1

- **Grafnet Principal**
 - Étage d'entrée: 11
 - Étage de sortie: 13

- **Grafnet T1**
 - X1 + X3

- **X13**

Macro-étape

Grafnet Principal

Expansion de la macro-étape M2

- Étage d'entrée: 11
- Étage de sortie: 13

TEMPORISATIONS

La transition 20 - 21 est franchie lorsque la temporisation, démarrée à l'étape 20 est écoulée, soit au bout de 5s.

COMPTAGE

ancienne représentation:

- C1 = 4
- C1 = 0

nouvelle représentation (affectation):

- C1 = C1 + 1
- C1 = 0
CAS PARTICULIERS

Réceptivité toujours vraie

ancienne représentation

```
  20
   ↑ h
   21
```

nouvelle représentation

```
  20
   ↓ h
   21
```

Événements (fronts)

Cas n°1

```
  20
   ↑ h
   21
```

Cas n°2

```
  20
   ↓ h
   21
```

La transition 20 - 21 est franchie lors d'un **front montant** sur h (cas n°1), ou lors d'un **front descendant** sur h (cas n°2).

Action conditionnelle

```
  20
   ↓ a
   21
```

L'action K devient effective à l'étape 20, lorsque la condition m est vraie.

K = X20 . m + X21

Action mémorisée

ancienne représentation : mise à 1 par S (set), mise à 0 par R (reset)

```
  22 S M1
   23
   24
   25 R M1
```

Nouvelle représentation (**affectation**)

```
  22 M1:=1
   23
   24
   25 M1:=0
```

L'action M1 est active aux étapes 22, 23 et 24.

Action à l'activation ou à la désactivation

```
  30 A:=1
  37 B:=1
```

L'affectation de A se produit à l'**activation** de l'étape 30

L'affectation de B se produit à la **désactivation** de l'étape 37
FORÇAGE ET FIGEAGE

Forçage

Grafcet G3

31

G2 \{20\}

Grafcet G2

X31 → 20

A l'étape 31 du Grafcet G3, il y a forçage du Grafcet G2 à l'étape 20.

Figéage

1. dans la situation courante

Grafcet G3

31

F/G2 : (*)

Grafcet G2

X31 → (*) G2

L'activation de l'étape 31 du Grafcet G3 fige le Grafcet G2 dans sa situation courante.

2. dans une situation prédéterminée

Grafcet G3

31

F/G2 : (*21))

Grafcet G2

X31 → (*) 21

A la différence du cas précédent, le Grafcet G2 se figera à l'étape 21, lorsqu'elle sera active.

Encapsulation

Une étape encapsulante contient d'autres étapes dites encapsulées. Lorsque l'étape encapsulante est active, son encapsulation peut évoluer librement. La désactivation d'une étape encapsulante provoque la désactivation des étapes appartenant à son encapsulation.

bibliographie: E. PEULOT et S. MORENO