

Ce document appartient à :
Nom:
Prénom:
Année :

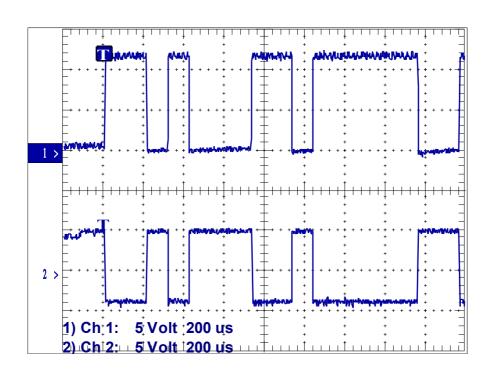
Essais de systèmes

Appareillages communicants

Documents ressources

- Communications asynchrones RS232 et RS485
 - Configuration HyperTerminal
 - Protocole de communication ModBus
 - Communications asynchrones sur Twido
- Mise en œuvre d'un analyseur de réseau RS232
- Réglage d'oscilloscope pour événement non périodique
 - Codage de caractères ASCII
- Présentation des systèmes communicants disponibles

Section de Technicien Supérieur en Électrotechnique Étudiants – Apprentis


Lycée Bernard Palissy

1 rue de Gascogne

17107 Saintes

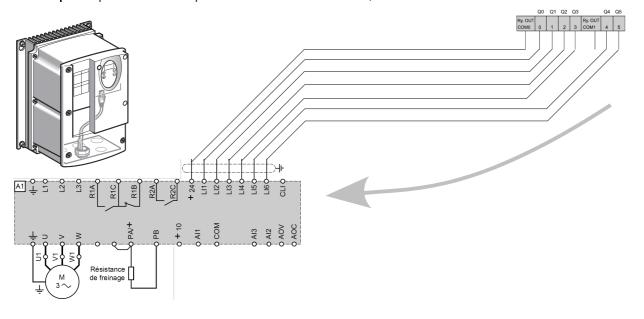
Sommaire

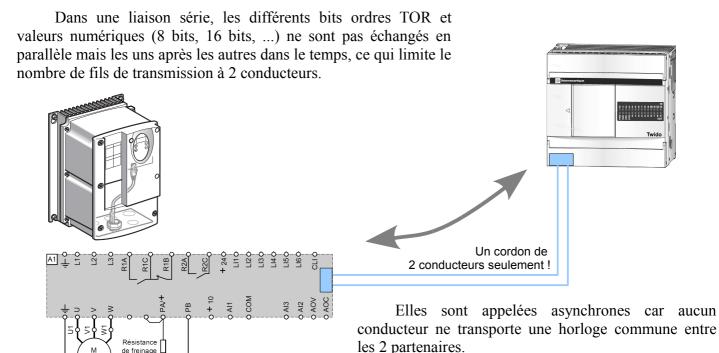
Présentation	2
Technologie des communications asynchrones.	3
Protocole	
Vitesse de transmission.	3
Glossaire	
Communications normalisées.	
Liaison RS232C	5
Niveaux des signaux	
Signaux de données	5
Liens	5
Contrôle de flux	5
Contrôle de flux matériel	5
Contrôle de flux logiciel	5
Signaux de contrôle et d'état de modem	6
Connectique	6
Raccordements	6
Liaisons RS422, RS485	7
Nature des signaux	
Communication SIMPLEX : un seul sens de communication	7
Communication Full-Duplex : 2 sens de communication simultanés	7
Communication Half-Duplex : 2 sens de communication alternés	
Connectique.	
Allure des signaux	8

Présentation

Les « liaisons séries » sont des moyens de transport d'informations (communication) entre divers dispositifs numériques industriels ou tertiaires. On les oppose aux liaisons parallèles qui nécessitent au moins un conducteur par bit à transmettre.

> Les liaisons parallèles nécessitent de mettre en œuvre au moins un conducteur par information, plus un conducteur pour la référence de potentiel. Par exemple, pour qu'un automate industriel envoie à un variateur de vitesse :


- 1 commande de marche (TOR)
- 1 commande d'arrêt (TOR)
- 1 commande de déverrouillage en cas de défaut (TOR)
- 1 sélection de 8 vitesses préprogrammées (codées sur 3 bits)

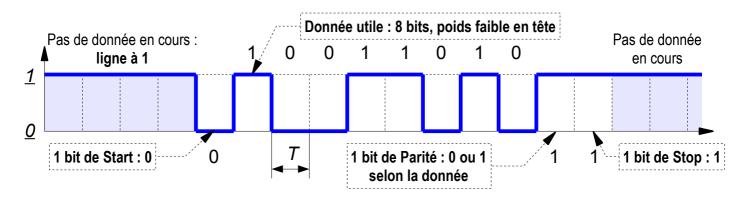

il faudra au moins 1+1+1+3+ 1 commun = 7 conducteurs.

S'il existe un autre variateur, ce sera 7 conducteurs supplémentaires.

Pour que l'automate récupère des informations du variateur, nouveaux conducteurs.

Technologie des communications asynchrones

Protocole


Le protocole d'échange asynchrone est défini par l'envoi, pour chaque caractère émis, de :

- un bit de Start,
- les 5 à 8 bits de **données**, poids faible en tête,
- éventuellement, un bit de vérification de Parité qui permet de déceler des erreurs de transmission des 8 bits de donnée sur la ligne,

Le bit de parité est mis à 1 si le nombre de bits de données est pair. Ainsi, si un bit de données est erroné durant la transmission, le comptage du nombre de bits à 1 à la réception mettra en évidence une non concordance avec le bit de parité, et donc une erreur de transmission. Si 2 bits sont erronés, la vérification de parité n'a plus d'effet.

• 1, 1½, ou 2 bits de **Stop** après.

Lorsqu'aucun caractère ne circule sur la ligne, celle-ci reste à l'état logique haut (« 1 »).

Ce chronogramme représente l'état logique AVANT la mise en forme en tension par l'adaptation de ligne, c'est à dire indépendamment du standard RS232, 422 ou 485 dont les niveaux de tension sont définis plus loin.

Vitesse de transmission

La vitesse de transmission représente la quantité d'informations qui peuvent être transportées pendant un certain temps. Elle est exprimée en bits par seconde (bps).

Les vitesses de transmission peuvent être entre autres :

Vitesse en bits par seconde (bps)	Application
75	Émission Clavier Minitel → Serveur Télétexte
110, 300, 600	
1200	Réception Serveur Télétexte → Écran Minitel
2400	
4800, 9600, 14400, 19200	API, Modem-Fax (14400)
56000, 115200, 128000, 256000	
187,5 kbps , 1,5 Mbps, 10 Mbps	Bus de terrain : Profibus,

Si la vitesse est de 9600 bits par seconde, le temps de présence d'un bit dans la trame (durée du bit) est de 1/9600 seconde soit 104 µs.

Glossaire

Unipolaire	Chaque signal électrique est référencé par rapport à une masse unique. Pour 7 signaux échangés, on aurait besoin de $7 + 1 = 8$ conducteurs.					
Différentiel	érentiel Chaque signal électrique est transporté entre 2 conducteurs, chacun a donc sa référence. Pour 4 signaux échangés, on aurait besoin de $2 \times 4 = 8$ conducteurs.					
DTE	« Data Terminal Equipment » : un équipement terminal de données est typiquement un ordinateur qui peut envoyer des données (depuis une application ou un clavier) et recevoir des données (vers une application ou l'écran).					
DCE	« Data Communication Equipment » : un équipement de communication de données ne génère aucune donnée mais convertit leur niveau électrique, typiquement c'est un Mode					
Mark	Niveau logique haut = « 1 »					
Space	Niveau logique bas = « 0 »					

Communications normalisées

Les différents types d'interface sont couramment désignés par le numéro de l'avis ou de la norme qui les définissent :

RS	correspond aux normes américaines définies par l'EIA (Electronics Industries Association).			
V ou X	correspond aux avis internationaux définis par le CCITT (Comité Consultatif International pour le Téléphone et les Télécommunications).			
Boucle de courant	Particulièrement utilisée dans l'industrie, ne correspond pas à une norme.			

EIA	RS 232	RS 423	RS 422	RS 485	Boucle
CCITT	V24 / V28		V11 / X27	V11 / X27	de courant
Type d'interface	Unipolaire	Unipolaire	Différentiel	Différentiel	0-20 mA
Sensibilité					
Distance (m)	15	1200	1200	1200	1000 à 2000
Débit max. (bps)	19200	100 K	10 M sur 100 m	10 M sur 100 m	19200
			100 k sur 1200 m	100 k sur 1200 m	
Multipoint	non	oui	oui	oui	oui
Nombre d'émetteurs	1	1	1	32	
Nombre récepteurs	1	10	10	32	
Niveau de sortie non chargé (V)	± 25	± 6	± 6	± 6	
Niveau de sortie pleine charge (V)	\pm 5 à \pm 15	± 3,6	± 2	± 1,5	
Niveau de sortie typique	± 12V			± 5V	
Impédance d'entrée	$3 \grave{a} 7 k\Omega$	$\geq 4k\Omega$	$\geq 4 \text{ k}\Omega$	$\geq 12 \text{ k}\Omega$	
Charge émetteur	3 à 7 kΩ	≥ 450 Ω	100 Ω	54 Ω	

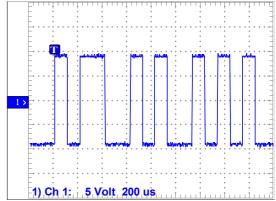
Vocabulaire:

Non chargé	La connexion est « en l'air », le fil n'est pas branché
Chargé	Il y a connexion entre l'émetteur et le récepteur, donc impédance de charge sur la ligne

Liaison RS232C

L'évolution temporelle des signaux RS232 est conforme aux signaux de liaison asynchrone décrits précédemment. La spécificité de RS232 tient dans l'adaptation en tension des signaux afin d'être transmis sur une distance supérieure (15m).

Niveaux des signaux


Niveau logique	Polarité	Intervalle de niveau électrique	Typique
'1' Basse		entre –3V et –15 V	-12V
' 0'	Haute	entre +3V et +15 V	+ 12V

On dit donc que l'on travaille en logique négative : « 1 » au niveau électrique bas, « 0 » au niveau électrique haut.

Signaux de données

Sur une liaison bidirectionnelle minimale sans contrôle de flux, il faudra 3 conducteurs:

Tx	Transmitted Data	Conducteur d'émission des données
Rx	Received Data	Conducteur de réception des données
Gnd	Ground	Conducteur de masse du signal

Liens

Normes: http://www.camiresearch.com/Data Com Basics/RS232 standard.html

Convertisseurs: http://bb-elec.com/technical_library.asp

Schémas: http://sjeffroy.free.fr/Divers/Convertisseur RS232-RS485/convertisseur rs232-rs485.html

Contrôle de flux

Les équipements connectés pour un échange de données (communication) peuvent ne pas traiter les informations à la même vitesse. Si le récepteur est plus rapide que l'émetteur, aucun problème n'apparaît.

Si l'émetteur travaille plus vite que le récepteur, des données peuvent être perdues. Il faut donc mettre en place un contrôle de flux par des signaux appropriés.

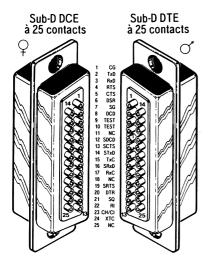
Contrôle de flux matériel

Le contrôle de flux est assuré par la présence et la connexion de conducteurs supplémentaires entre le DTE et le DCE.

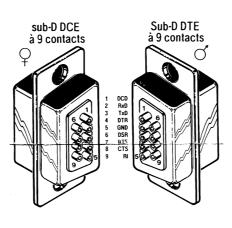
RTS	Request To Send	Ce signal est abaissé (« 0 ») pour préparer le DCE à accepter les données transmises. La préparation consiste à activer les circuits de réception, ou activer le canal dans les applications demi-duplex. Lorsque le DCE est prêt, il acquitte en abaissant CTS.
CTS	Clear To Send	Le signal est abaissé par le DCE pour informer le DTE que la transmission peut débuter.

Contrôle de flux logiciel

Le récepteur stoppe le flux de données en envoyant sur la ligne de données un caractère dédié nommé XOFF, et le relance en envoyant le caractère XON. D'où le nom du protocole XON/XOFF.


Le caractère XON est le code ASCII DC1, XOFF est le code DC3, présentés plus loin dans la documentation ASCII.

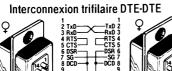
Signaux de contrôle et d'état de modem

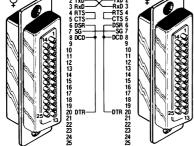

DSR	Data Set Ready	Si connecté à un modem :			
		✔ Le modem est connecté sur une ligne téléphonique saine			
		✓ Le modem est en mode Data, et non pas en mode voix ou numérotation			
		✔ Le modem est en train de générer une tonalité de réponse			
		Si connecté à un autre dispositif:			
		✓ Le DCE est actif.			
		Si non utilisé, doit être forcé à « 0 ».			
DCD	Data Carrier Detect	Détection de porteuse de données sur la ligne			
DTR	Data Terminal Ready				
RI	Ring Indicator	Signale une sonnerie d'appel téléphonique sur le modem			

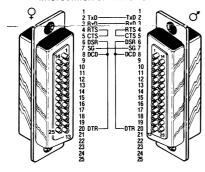
Connectique

Canon Sub-D 25 broches

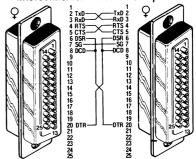
Canon Sub-D 9 broches

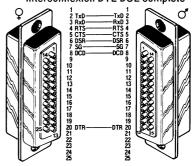



RJ45 (RS 232 D)


- DSR/RI
- 2 CD
- 3 DTR
- 4 Gnd
- 5 **RxD**
- 6 TxD
- 7 **CTS**
- RTS

Raccordements




Interconnexion trifilaire DTE-DCE

Interconnexion DTE-DTE complète

Interconnexion DTE-DCE complète

Liaisons RS422, RS485

L'évolution temporelle des signaux RS422 et RS485 est identique aux signaux RS232 et liaison asynchrone décrits précédemment. La spécificité de RS422/485 tient dans l'adaptation en tension différentielle des signaux afin d'être transmis sur une distance supérieure (1200 mètres).

- Le niveau logique « 1 » est défini par une tension positive de l'ordre de + 5 V
- Le niveau logique « 0 » est défini par une tension négative de l'ordre de 5 V Contrairement au format RS232, RS485 travaille donc en logique positive.

Nature des signaux

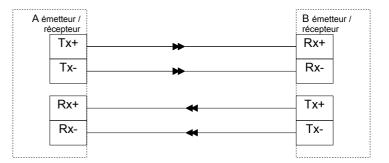
Communication SIMPLEX: un seul sens de communication $A \rightarrow B$

Sur une liaison unidirectionnelle (rarement utilisée), il faudra:

- le conducteur d'émission de données Tx+ de A qui va sur Rx+ de B : polarité positive
- le conducteur d'émission de données Tx de A qui va sur Rx– de B : polarité négative
- le blindage

Communication Full-Duplex: 2 sens de communication simultanés

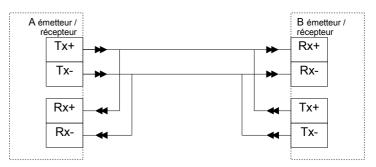
Sur une liaison bidirectionnelle (de type 4 fils), il faudra:


les 2 conducteurs d'émission des données

$$Tx+$$
, $Tx-$ de $A \rightarrow Rx+$, $Rx-$ de B

les 2 conducteurs de réception des données

$$Tx+$$
, $Tx-$ de $B \rightarrow Rx+$, $Rx-$ de A


le blindage

Communication Half-Duplex : 2 sens de communication alternés : la plus utilisée

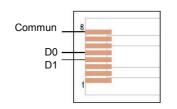
Sur une liaison bidirectionnelle alternée de type 2 fils, il faudra :

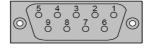
- le conducteur d'émission/ réception des données Tx+/Rx+ de A et B
- le conducteur d'émission/ réception des données Tx-/Rx- de A et B
- le blindage

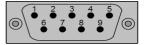
Connectique

Connecteur RS485 en RJ45

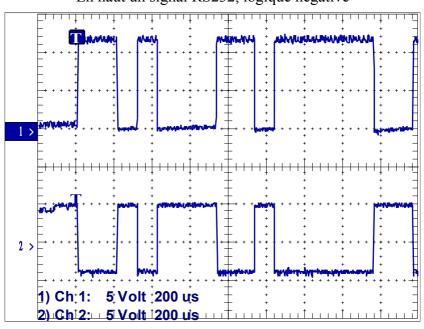
Vue de dessus




<u>Mâle</u>


Connecteur RS-485 en Sub-D 9 broches

Vue de face



<i>RJ45</i>	Sub-DB9	Exigence	2	fils	4 fils		Description
			IDv	EIA/TIA 485	IDv	EIA/TIA 485	
1	8	requis			RxD0	A'	Receiver terminal 0, potentiel Va'
2	4	requis			RxD1	B'	Receiver terminal 1, potentiel Vb'
3	3	optionnel	PMC		PMC		Port Mode Control
4	5	requis	D1	B/B'	TxD1	В	Transceiver terminal 1, potentiel V1/Vb
5	9	requis	D0	A/A'	TxD0	A	Transceiver terminal 0, potentiel V0/Va
7	2	recommandé	VP				Alimentation positive 524VDC
8	1	requis	Common	C/C'	Common	C/C'	Commun d'alimentation et de signal

Allure des signaux

En haut un signal RS232, logique négative

En bas la même trame convertie en RS485, logique positive

Notez bien l'origine des traces 1 et 2.

Présentation

NyperTerminal est un utilitaire livré avec Windows XP permettant de communiquer sur des liaisons distantes à travers les ports de communications série intégrés à l'ordinateur, et parfois sur de longues distances sur le réseau téléphonique commuté à travers un modem.

HyperTerminal a été retiré des distributions Windows Vista et Windows 7.

http://windows.microsoft.com/fr-FR/windows-vista/What-happened-to-HyperTerminal

http://zebrablog.net/hilitec/index.php/2008/05/27/29-solution-remplacer-hyperterminal-hyper-terminal-pour-windows-vista-7alternative-tera-term-pro-professional-telecharger-download

On peut alors télécharger gratuitement « HyperTerminal Private Edition » :

ftp://ftp.hilgraeve.com/htpe/htpe63.exe

Configuration de l'HyperTerminal sous Windows XP

• Ouvrir l'application HyperTerminal par le menu :

Démarrer | Accessoires | Communications | HyperTerminal

- Un dialogue propose d'utiliser HyperTerminal pour du réseau TCP/IP distant.
 - Répondre Non

- ◆Un dialogue demande de définir les paramètres géographiques de numérotation.
 - Complétez l'indicatif régional.
 - Conserver le mode Fréquence vocale
 - ✓ Validez par OK

- Un dialogue demande de définir un nom pour cette configuration de connexion.
 - Saisir le nom selon les conventions de votre établissement. Par exemple Tp-Com1
 - Validez par OK

- Un dialogue demande quel port de communication est utilisé.
 - Sélectionner le port série COM1 (sauf autre configuration de votre matériel).
 - ✓ Validez par OK

- ◆Un dialogue demande de configurer les paramètres de communication.
 - ✓ Sélectionnez les valeurs selon votre besoin.
 - ✓ Validez par OK
- ◆La fenêtre de terminal apparaît. Le temps de connexion s'écoule dans la barre d'état en bas à gauche

Ouvrir le menu Fichier | Propriétés.

- Cliquer sur le bouton Configuration ASCII...
- **C**ocher
- « Reproduire localement les caractères entrés ».
- ✓ Valider par OK 2 fois.

Présentation

Le protocole Modbus est un protocole Maître-Esclave qui permet à un seul et unique maître de demander des réponses à des esclaves ou des actions en fonction de la requête. Le maître peut s'adresser aux esclaves individuellement ou envoyer un message de diffusion générale à tous les esclaves. Les esclaves renvoient un message (réponse) aux requêtes qui leur sont adressées individuellement.

Les requêtes de diffusion générale du maître n'attendent pas de réponses en retour.

Jusqu'à 32 nœuds peuvent résider sur un réseau RS485 (1 maître et jusqu'à 31 esclaves).

Protocole

- ➤ Le nombre de bits de la liaison asynchrone doit être de 8.
- ➤ Un « caractère » est constitué de 7 ou 8 bits de données :
 - le mode « RTU » (8 bits utiles par caractère) est le mode d'exploitation, le plus rapide, le plus performant ;
 - le mode « ASCII » demande la saisie au clavier de chaque caractère par son code en hexadécimal (7 bits par chiffre), il est principalement utilisé à fins de maintenance et débogage.
- > La parité utilisée par défaut doit être paire (EVEN). Si l'on n'utilise aucune parité, on doit passer à 2 bits de STOP.
 - Toutes les spécifications de ModBus sont disponibles sur http://www.modbus.org
 - Pour voir les requêtes ModBus supportées par le TWIDO, voir l'aide en ligne de TwidoSoft et rechercher l'expression « Requêtes Modbus standard »

Requête en mode RTU

> Trame:

N° esclave		Code fonction	1er par	amètre	Autres paramètres	CR	C16
	1 octet	1 octet	PF: 1 octet	Pf : 1 octet	N octets	PF:1 octet	Pf: 1 octet

- ➤ N° esclave : de 1 à 247
- ➤ N° fonction :
 - 01 : Lecture de n bits de sorties consécutifs : Param1 = Adresse, Param2 = Quantité
 - 02 : Lecture de n bits d'entrées consécutifs : Param1 = Adresse, Param2 = Quantité
 - 01/02: Sur Schneider TSX-Nano et Twido: lecture de n bits internes %Mi consécutifs
 - 03 : Lecture de n mots internes consécutifs :
 - x Param1 = Adresse
 - x Param2 = Quantité
 - 04 : Lecture de n mots registres d'entrées consécutifs : Param1 = Adresse, Param2 = Quantité
 - 03/04: Sur Schneider TSX-Nano et Twido: lecture de n mots internes %MWi consécutifs
 - 05: Écriture d'un bit interne ou de sortie : Param1 = Adresse, Param2 = 0000 ('0') ou FF00 ('1')
 - 06 : Écriture d'un mot interne ou registre : Param1 = Adresse, Param2 = Valeur
 - 15 : Écriture de n bits internes ou de sortie consécutifs :
 - x Param1 = Adresse
 - x Param2 = Nbre de bits
 - x Param3 = Nbre d'octets
 - x Params[i] = valeurs
 - 16 : Écriture de n mots internes ou registres consécutifs :
 - x Param1 = Adresse
 - x Param2 = Nbre de mots
 - x Param3 = Nbre d'octets
 - x Params[i] = valeurs
- > 1^{er} paramètre : adresse du bit ou mot adressé
- > 2^{ème} paramètre : 'quantité de mots adressés' ou 'valeur du bit ou mot écrit' selon la fonction utilisée
- > Autres paramètres : données écrites dans plusieurs mots consécutifs
- Les paramètres sont codés sur 2 octets poids fort (PF) en tête, poids faible (pf) à suivre
- > CRC16 : code de redondance cyclique pour détecter les erreurs de transmission
- La fin de trame est détectée par une absence d'émission pendant une durée de 3 caractères minimum

Réponse en mode RTU

> Fonctions 01, 02, 03, 04

N° esclave	caractères		Données reçues	CRC16			
1 octet	1 octet	1 octet	N octets	PF:1 octet	Pf: 1 octet		

> Fonctions 05, 06,

N° esclave Code		Code fonction	Adresse	affectée	Donné	e écrite	CR	C16
	1 octet	1 octet	PF: 1 octet	pf: 1 octet	PF: 1 octet	pf : 1 octet	PF:1 octet	pf: 1 octet

> Fonctions 15, 16

N° esclave	Code fonction	Adresse	affectée	Nbre de don	nées écrites	CRO	C16
1 octet	1 octet	PF : 1 octet	pf: 1 octet	PF : 1 octet	pf : 1 octet	PF:1 octet	pf: 1 octet

Requête en mode ASCII

- Le nombre de bits de la liaison asynchrone doit être de 7.
- > La parité utilisée par défaut doit être paire (EVEN). Si l'on n'utilise aucune parité, on doit passer à 2 bits de STOP.
- > Le temps par défaut entre 2 caractères peut aller jusqu'à 1 seconde, sinon configurer pour des intervalles plus longs.

Début N° esclave		Code fonction	1er paramètre	Autres paramètres	LRC	Fin
1 caractère ':' : \$3A	2 caractères '01' à 'F7'	2 caractères '01', '02', '03', '04',	4 caractères		2 caractères	2 caractères 'CR' : \$0D, 'LF' : \$0A

Les fonctions utilisées sont identiques au mode RTU

Calcul du LRC

Somme en hexadécimal, modulo FF, du contenu de la trame, hors entêtes; complémentée à 2 et codée en ASCII.

Exemple : Écriture de la valeur \$1968 à l'adresse \$00A8 sur l'esclave N° 11

> Trame RTU

N° esclave	Code fonction	Adresse de	la donnéet	Valeur	à écrire	CR	C16
0B	06	PF : 00	Pf : A8	PF : 19	Pf : 68	PF:	Pf:

> Trame ASCII équivalente

ic Aben	cqui	vaici	III														
	Dép.	Esc	lave	Fond	ction		Adr	esse			Val	eur		LI	RC	Fin de	ligne?
Caractère	:	0	В	0	6	0	0	\boldsymbol{A}	8	1	9	6	8	C	6	CR	LF
Code ASCII	3A	30	42	30	36	30	30	41	38	31	39	36	38	43	36	0D	0A

> Calcul du LRC

• 0B + 06 + 00 + A8 + 19 + 68 = 13A modulo FF = 3A = 0011 1010 b

Complément à 1:
Complément à 2: additionner 1:
Conversion en Hexadécimal:
Codage en ASCII:
1100 0101 b
1100 0110 b
6
43 36

Réponse en mode ASCII

Les types de réponses sont les mêmes qu'en mode RTU, sur des trames ASCII

L'automate

L'automate Schneider-Electric TWIDO Compact TWDLCAA24DRF, alimenté en 230V~, dispose de 14 entrées 24VDC et de 10 sorties relais.

Le port RS485 intégré (N°1) est utilisé pour le paramétrage et le développement du programme. Le TWIDO a alors été équipé d'un module d'adaptation RS485 supplémentaire sur le port N°2 de référence TWDNAC485D à sortie Mini-DIN 8 broches. Ce module n'est disponible que sur les automates 16 & 24 E/S compacts et pour le module d'expansion Afficheur.

Pour d'autres types de raccordements, on pourra utiliser le module TWDNAC485T sur bornier à vis ou TWDNAC232D en RS232 sur Mini-DIN 8 broches.

Limitations de la couche Modbus du Twido

• Adresses des esclaves : 1 à 247 • Bits: 128 bits sur demande

• Mots: 64 mots de 16 bits sur demande

La connexion

Les nouveaux micro-ordinateurs ne sont plus équipés de ports série RS232. Des adaptateurs USB → Série sont alors proposés. Malheureusement, si ceux-ci remplissent à peu près normalement leur fonction pour des communications standard RS232, ils sont quasiment inutilisables pour des communications RS485 sur 2 fils. En effet, le RS485 sur 2 fils est un mode semi-duplex, dans lequel l'émetteur et le récepteur prennent la ligne à tour de rôle. La prise de ligne est assurée par l'activation du signal de demande d'émission RTS. Les adaptateurs USB → Série laissent le RTS en permanence à l'état actif, ce qui induit un court-circuit entre l'émetteur maître et le récepteur esclave lorsque ce dernier répond.

Connexion d'un PC à un automate TWIDO

Le raccordement entre le port RS232 du PC et le port RS485 du TWIDO est du même type pour la programmation ou pour la communication de process, à l'aide du câble adaptateur TSXPCX1031, dont les différentes fonctions du mode série sont sélectionnées selon la position du commutateur sur le convertisseur:

Position de l'interrupteur Rotary	Fonction	Signal /DTP	Signal RTS			
0	TER MULTI – Connexion en mode point à point. Force le port du terminal en mode maître, protocole par défaut (remplace la câble réf. TSX PCU 1031)					
1	OTHER MULTI – Connexion en mode multipoint. Autres types de communication (remplace le câble réf. TSX PCD 1030)					
2	TER DIRECT – Connexion en mode point à point. Force le port du terminal en mode maître, protocole par défaut (remplace la câble réf. TSX PCX 1030, bacsulé en position maître et TSX PCU 1030)					
3	OTHER DIRECT – Connexion en mode point à point. Autres types de communication définis par la configuration de l'automate (remplace le câble réf. TSX OXC 1030, basculé en position esclave)					

La longueur maximale des connexions RS485 non isolées sur les automates TWIDO est de 200m.

Attention: Dommages électriques potentiels de l'automate :

Ne connectez pas le câble de communication à l'automate avant de la connecter au PC.

Connectez toujours le câble au PC en premier.

Réalisation d'un cordon de mesure des signaux RS485

Signaux utiles

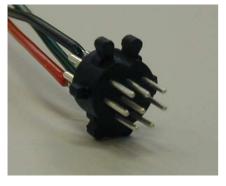
La documentation en ligne de TwidoSoft fournit le brochage des connecteurs mini-DIN à 8 broches :

Pour assurer la liaison Modbus, il suffit de câbler les signaux RS485 A(+) et B(-). Cependant, le cordon convertisseur TSXPCX1031 est alimenté par le Twido, il est alors nécessaire de permettre le passage de l'alimentation par le 0 V et le 5 V. D'ailleurs, les seules broches câblées sur le module option RS485 sont ces 4 broches de N° 1, 2, 7 et 8.

Broches	Base RS485	Option RS485	Option RS232-C RTS DTR TxD RxD DSR			
1	A (+)	A (+)	RTS			
2	B (-)	B (-)	DTR			
3	nc	nc TxD				
4	/DE	nc	RxD			
5	/DPT	nc	DTR TxD RxD			
6	nc	nc	Gnd			
7	0 V	0 V	Gnd			
8	5 V	5 V	5 V			

Cordons de liaison Mini-Din 8 (RS232/RS482)

Les cordons mini-Din 8 broches ne sont pas très répandus, que ce soit en prolongateurs (Mâle / Femelle) afin de « piquer » 8 5 V 5 V les signaux des conducteurs 1 et 2 sur oscilloscope pendant une communication, ou en connexion (Mâle/Mâle) afin d'établir une liaison Twido ModBus maître.

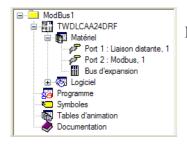

Apple a utilisé ce type de câbles pour des liaisons d'imprimante série. Voici quelques fournisseurs :

- Belkin : Câble d'imprimante série Mac®, série pro, Mâle-Mâle 1,80 m F2V024fg06
- M2N : Rallonge mini DIN, 8pins, Mâle-Femelle 5m Réf. Fabriquant : 33051 (~12 €) http://www.m2n.fr/shop/cables/cable-serie/mac-sun/rallonge-mini-din-8pins-5m.html

http://www.belkin.com/IWCatSectionView.process?Section Id=709

A défaut, il faudra se procurer un connecteur mâle et 1 connecteur femelle sur lesquels on soudera les 4 conducteurs. Fort heureusement, la broche N° 4 n'est pas à souder. Les broches 1, 2, 7 et 8 sont bien accessibles.

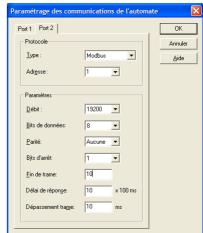
Quelques photos de la réalisation



Les conducteurs ont été dénudés en leur milieu afin d'y attacher les pinces Grip-fil de l'oscilloscope, et d'observer le signal RS485.

Configuration d'un Twido en Esclave ModBus

L'automate


Il existe deux types de périphériques ModBus compatibles avec TwidoSoft:

Maître: transmet une requête ModBus et demande des réponses aux périphériques esclaves. Compatible avec l'instruction EXCH.

Exclave: répond aux requêtes ModBus d'un maître ModBus.

Le TWIDO ne nécessite aucune programmation pour devenir esclave ModBus, simplement une configuration.

Les automates Twido gèrent l'utilisation des modes ModBus ASCII et ModBus RTU. Le nombre de bits de données sélectionnés dans la boîte de dialogue Paramétrage des communications de l'automate détermine le mode activé:

8 bits de données : protocole ModBus RTU 7 bits de données : protocole ModBus ASCII

Connecter le PC sur le port de communication TER (N°1);

Lancer TwidoSoft et créer une nouvelle application;

Configurer le port N°2 en Modbus RTU (8 bits) ou ASCII (7 bits) à la vitesse de votre choix : ex. 9600 ou 19200 bps;

Créer un programme de base qui permet d'agir sur les variables internes et sur les E/S:

- Recopier les 14 entrées %I0.0 à %I0.13 dans les bits 14 internes %M0 à %M13
- Recopier les 10 bits internes %M16 à %M25 sur les 10 sorties %Q0.0 à %Q0.9
- Placer les 4 constantes suivantes dans les mots %MW0 à %MW3 : 0x1234, 0x5678, 0x1000, 0xABCD
- Incrémenter %MW4 chaque 1/10e de seconde

```
(* IMAGES ENTRÉES / SORTIES DANS BITS INTERNES *)
LD
[ %M0:14 := %I0.0:14 ]
[ %Q0.0:10 := %M16:10 ]
(* AFFECTATION CONSTANTES DANS 4 MOTS *)
      1
[ %MW0 := 16#1234 ]
[ %MW1 := 16#5678
[ %MW2 := 16#1000
[ %MW3 := 16#ABCD ]
(* DÉTECTION FRONT MONTANT %S5 (CHAQUE 1/10E SECONDE) DANS %M31 *)
T.D
      %S5
ANDN
      %M30
ST
      %M31
T.DN
      %S5
      %M30
(* INCRÉMENT %MW4 CHAQUE 1/10E SECONDE *)
LD
     %M31
[ \%MW4 := \%MW4 + 1 ]
(* INCRÉMENT %MW6 SUR CHAQUE MISE À 1 DE L'ENTRÉE 0 *)
    %I0.0.0
LDR
[ \%MW6 := \%MW6 + 1 ]
```

• Incrémenter %MW6 sur chaque front montant de %I0.0

Enregistrer l'application

Connecter logiciellement l'API et y transférer le programme

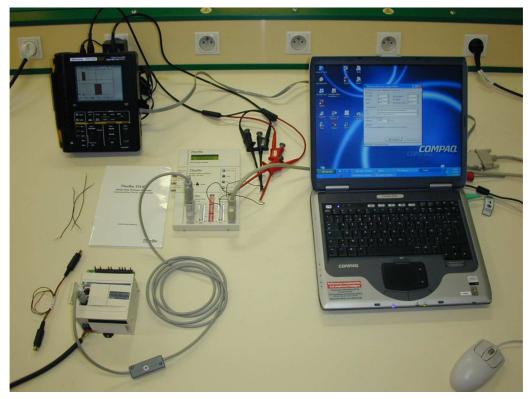
Placer l'automate en mode RUN

Quitter TwidoSoft

Page vide pour classement des feuillets.
Vous pouvez y prendre des notes complémentaires.

Présentation

Un analyseur de réseau asynchrone permet de mettre en évidence les signaux de contrôle de flux échangés, mais aussi d'afficher en clair les trames de données. Nous avons choisi ce modèle :


Thurlby DA100 + DA101 + DA102 : http://www.mbelectronique.fr/html/uploads/prodfr1529.htm

de Thurlby Thandar Instruments : http://www.ttinst.co.uk/languages/home-french.htm

On peut le trouver chez le distributeur Radiospares, qui propose l'ensemble DA100/101/102 pour environ 350 à 400 €.

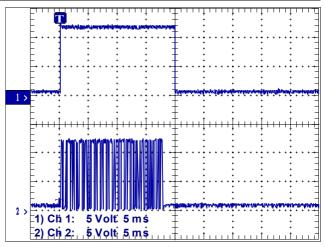
Cet analyseur met à disposition l'ensemble des signaux de contôle RS232 qui peuvent alors être visualisés à l'oscilloscope. Celui-ci doit être un modèle à entrées isolées afin d'avoir des masses indépendantes entre les signaux. Ainsi une voie pourra afficher la ligne RS232, tandis que la seconde affichera les données RS485. Nous disposons du modèle

L'ensemble du banc de manipulations peut alors ressembler à l'illustration ci-dessus :

Sortie RS232 du PC

- → Analyseur de réseau
- Adaptateur RS485
- ⇒ API Twido

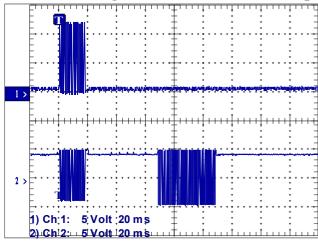

Analyseur de réseau

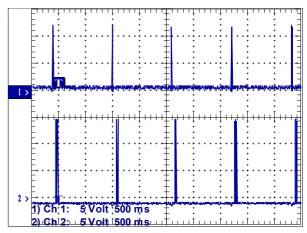

Oscilloscope

Relevé de signaux RS232 à l'oscilloscope

Sur ce premier relevé, on trouve le signal **RTS** issu du PC, qui permet à l'adaptateur RS485 de prendre la ligne en charge, et d'émettre les données ici représentées par le signal **TxD**.

On peut noter les niveaux de tension RS232 en logique négative qui sont d'environ 0,6V pour le niveau bas (1 logique) et environ 12V pour le niveau haut (0 logique).

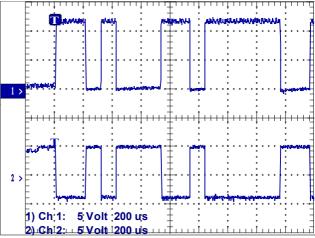



Le deuxième relevé montre l'échange question/ réponse avec en haut la trame de question du PC (**TxD**), en bas la trame de réponse de l'API (**RxD**).

On peut noter le temps écoulé entre la question et la réponse (environ 50ms), qui représente le temps de pause signifiant la fin de trame (3 caractères ~ 3 ms à 9600bps), + le temps de décodage de la question, + le temps de préparation de la réponse.

Sur ce troisième relevé, on trouve une suite d'échanges question/ réponse, à un intervalle d'environ 1 seconde entre une réponse et la nouvelle requête.

Relevé de signaux RS485 à l'oscilloscope



Ici la voie 1 représente la même émission TxD en RS232.

La voie 2 montre la ligne RS485 qui supporte l'émission TxD et la réception RxD en mode différentiel, c'est à dire en niveaux de tension +5V pour le 1 logique, -5V pour le 0 logique.

Enfin une dernière association RS232/ RS485 pour le premier caractère « : »de la trame, de code ASCII « 3A ». Le caractère a une durée d'environ 1,1 ms à compter du bit de Start qui apparaît à la première division de l'écran.

Acquisition de l'événement

	Scopix 602x / 604x / 7042 / 704x	Votre oscillo
Activer la voie 1	Cocher ch1	
Désactiver les autres voies	Décocher ch2/math2, ch3/math3, ch4	
Configurer la voie 1 en acquisition DC (signal complet)	Menu Vert ch1 Sensibilité/Couplage Cocher Couplage DC	
Régler la voie 1 sur 5V /div	Menu Vert ch1 Sensibilité/Couplage Sensibilité voie : 5.00V	
Configurer la bande passante (Pour éliminer certains parasites)	Menu Vert ch1 Sensibilité/Couplage Limit BP 1.5 MHz	
Régler le déclenchement sur la voie 1	Menu Décl Paramètres Onglet Principal Source : 1	
Régler le couplage de déclenchement en DC (pour déclencher sur un niveau de tension)	Menu Décl Paramètres Onglet Principal Couplage : DC	
Régler le niveau de déclenchement à ~ 1 V (0,5 < V < 3V)	Menu Décl Paramètres Onglet Principal Niveau : 1.00 V	
Régler le déclenchement sur front montant	Menu Décl Paramètres Onglet Principal Front : +	
Régler le déclenchement sur apparition d'un événement type front	Menu Decl Mode déclenché	
Voir si trace		
Régler la base de temps horizontale	Appuyer sur les 2 boutons de /Horizontal/ jusqu'à une base de temps de 0,2 ms (ou 200 μs)	
Tester la trace	Où est le début de trace ?	
Régler le début de trace	Cliquer sur le « T » de début de déclenchement en haut de la trace et le placer à 10% de la largeur (fin de la première division)	

Impression de la trace

Connexion en réseau Ethernet

	Scopix 602x / 604x / 7042 / 704x	Votre oscillo
Configurer l'adresse réseau de l'oscilloscope	Menu Utils Config ports E/S Réseau Adresse IP de l'oscilloscope : 192.168.22x.xxx (ou selon équipement) Adresse IP de l'imprimante : 192.168.221.200 (ou selon équipement) Valider par [OK]	
Définir le protocole de l'imprimante	Menu Utils Copie d'écran Protocole HP-PCL	
Définir le port d'impression	Menu Utils Copie d'écran Port Réseau	

Présentation

A.S.C.I.I. est l'abréviation de American Standard Code for Information Exchange. Ce codage consiste à associer une valeur numérique binaire (interprétable en hexadécimal, décimal, ...) à chacun des caractères dans l'échange de données informatique : caractères alphabétiques et numériques (alphanumérique), ponctuation, codes de contrôles divers.

Différentes variantes du code ASCII sont disponibles pour différentes langues. Il existe même une version Extended de ASCII où le 8^{ème} bit de données est utilisé, ce qui permet de distinguer 2 fois plus de caractères, notamment les caractères accentués pour le français. On exprime ce sigle ASCII par le son

Table de caractères

Codes hexadécimaux

F	f	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9	. A	. B	. C	. D	. E	. F
0 .		NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	HT	LF	VT	NP	CR	SO	SI
1.		DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
2 .			!	"	#	\$	િ	&	`	()	*	+	,	-		/
3 .		0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
4 .		9	A	В	С	D	E	F	G	Н	I	J	K	L	М	N	0
5 .		P	Q	R	S	T	U	V	W	х	Y	Z	[\]	^	_
6 .		`	a	b	С	d	e	f	g	h	i	j	k	1	m	n	0
7.		р	q	r	s	t	u	v	W	х	У	Z	{	ı	}	~	Del

Utilisation et conversions

Le caractère « A » a comme premier digit hexadécimal un « 4 » (colonne de gauche) et comme second digit hexadécimal un « 1 » (ligne du haut). Son code ASCII hexadécimal est donc la valeur hexa 41(h).

Ce même code ASCII en décimal donne :

Conversion en décimal:

Les puissances de 16		16 ¹		16°		
valent		16		1		
associées à	Х	4		1		
donnent	=	64	+	1	=	65

Conversion en binaire:

Chaque digit	4	1
est converti en binaire	0100	0001

Interprétation

Lorsqu'une donnée est visualisée, comme dans une table d'animation d'automate programmable, celleci peut être affichée et interprétée selon différents codages, indépendamment de son utilisation : en décimal, en hexadécimal, en binaire ou en caractère ASCII.

Caractères spécifiques de contrôle

Nom	Commande	Action					
Comm	andes de format						
CR	Carriage return	Retour chariot : retour en début de ligne					
LF	Line feed	Avancer d'une ligne : passage à la ligne suivante					
BS	Backspace	Espace arrière : suppression	Espace arrière : suppression du caractère précédent				
HT	Horizontal tabulation Tabulation horizontale : déplacement dans la ligne pour aligner						
VT	Vertical tabulation	Tabulation verticale					
SP	Space	Espace					
FF	Form feed	Avancer d'une feuille : pass	ser à la page suiva	ante			
Extens	ion de code	,					
SO	Shift out						
SI	Shift in						
ESC	Escape	Début de séquence d'écha	ppement				
Comm	ande de séparation						
FS	File separator						
GS	Group separator						
RS	Record separator						
US	Unit separator						
EM	End of medium						
Comm	andes de communicatio	n synchrone					
SOH	Start of header		ACK	Positive acknowledge			
STX	Start of text		NAK	Negative acknowledge			
ETX	End of text		SYN	Synchronisation			
EOT	End of transmission		DLE	Data link escape			
ETB	End of transmission block		NUL	Null			
ENQ	Enquiry						
Comm	andes de périphérique						
DC1	Device control 1		DC3	Device control 3			
DC2	Device control 2		DC4	Device control 4			
Comm	andes diverses	'	l l	·			
CAN	Cancel						
SUB	Substitute						
DEL	Delete	Supprime le caractère qui suit					
BEL	Bell	Émet un « bip » ou un autre avertissement sonore					

Quelques liens

http://fr.wikipedia.org/wiki/ASCII

http://www-clips.imag.fr/commun/bernard.cassagne/Introduction_ANSI_C/node135.html

Système Éolienne didactisée

Système:

Eolienne didactisée

Objectif:

Produire de l'énergie électrique

Fournisseur

GTI Systèmes - Carcassonne

Dispositif communicant:

Compteur d'énergie **ARDETEM** PECA30E

	lacement	1 10	• , • •
H m n	MADAMA DIAT	A11 A10	nacitit
	ucemeni	<i></i>	,,,,,,,,,,
<u> </u>	ticciniciti	tree trees	DOBUUL

Connexion du dispositif sur le système

Esclave d'API TSX Micro 3722

Façade

Connexion du dispositif en manipulations

Connecteur 3 fils en façade de porte droite

Adresse de test

140

Grandeur à mesurer

Tension Phase 1

Remarques:

Débrancher le maître ModBus par le connecteur DB9 Configurer le format de récupération des données réelles (flottant IEEE ou Double entier)

en mode ENTIER

Système TGBT Communicant 2.

Système:

Armoire TGBT

Objectif:

Distribuer l'énergie électrique et assurer les protections

Fournisseur

DEC-Industrie

Dispositif communicant:

Compteur d'énergie **ENERDIS** PM820

Emplacement du dispositif:

Façade de l'armoire TGBT

Connexion du dispositif sur le système

Esclave d'un API Wago

Connexion du dispositif en manipulations

Connecteur 3 fils TxRx+ / TxRx- / Masse sur flanc gauche

Adresse de test

31102

Grandeur à mesurer

Puissance Phase 2

Remarques:

• Déconnecter le maître Modbus sur le module RS485 de l'API - paire de conducteurs blanc et marron

Station de pompage 3.

Système:

Station de pompage

Objectif:

réguler la hauteur d'une colonne d'eau

Réalisation Section électrotechnique

Fournisseur

Dispositif communicant:

Variateur de vitesse Leroy-Somer **DIGIDRIVE**

Emplacement du dispositif:

Intérieur armoire électrique

Connexion du dispositif

Esclave de l'API TSX Premium

Adresse de test

Grandeur à mesurer

Vitesse moteur pompe

Remarques:

Débrancher le TSX maître par la prise SUD-D métallique sur le boitier TSX-ACC1

4. Bain thermorégulé

Système:

Bain régulé

Objectif:

Réguler la température d'un bain de traitement thermique

Fournisseur

GTI Systèmes - Carcassonne

Dispositif communicant:

Régulateur Chauvin Arnoux STATOP 48

Emplacement du dispositif:

Façade de l'armoire électrique

Connexion du dispositif

Esclave de réseau externe par connecteur châssis

Adresse de test

Grandeur à mesurer

Remarques: